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Motivated by recent theoretical and experimental works, we study the statistical fluctuations of the paramet-
ric derivative of the transmission T and reflection R coefficients, �T /�X and �R /�X, respectively, in ballistic
chaotic cavities in the presence of absorption. Analytical results for the variance of �T /�X and �R /�X, with and
without time-reversal symmetry, are obtained for asymmetric and left-right symmetric cavities. These results
are valid for an arbitrary number of channels for strong absorption strength, in complete agreement with the
results found in the literature in the absence of absorption. A simple extrapolation to any absorption strength is
qualitatively correct.
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I. INTRODUCTION

In chaotic and weakly disordered quantum systems which
are not self-averaging, phase coherence gives rise to sample-
to-sample fluctuations in most transport properties with re-
spect to a small perturbation in the incident energy, an ap-
plied magnetic field or the shape of the system. Those
fluctuations are universal �1,2� and depend only on the sym-
metry properties, such as the presence or absence of time
reversal invariance �TRI�, and spatial symmetry �3–6�. A sta-
tistical analysis is well described by random matrix theory
�RMT� �7�.

The parametric dependence of the conductance has been
studied experimentally by considering ballistic quantum dots
connected to electron reservoirs by ballistic points contacts
with few propagating modes �8–12�. RMT predictions can
also be verified in wave scattering experimental systems,
such as microwave cavities �13,14�, acoustic resonators �15�,
or elastic media �16�, where the external parameters are easy
to control. However, absorption is always present in these
experiments and its influence on the universal transport prop-
erties is rather dramatic �17�; therefore, many theoretical and
experimental works have been devoted to the effect of ab-
sorption on the transmission T and reflection R coefficients
of the cavity �17–23�. The derivative of those coefficients
with respect to the external parameter has not been consid-
ered in the presence of absorption. A parametric derivative is
very important in the characterization of mesoscopic systems
with a chaotic classical limit �24,25�, since it is analogous to
the level velocity �26–29�.

Motivated by recent experiments in microwave cavities
�21,23�, in the present paper we study the statistical fluctua-
tions of the parametric derivative of T and R with respect to
an external parameter X ,�T /�X and �R /�X, in the presence
of absorption. We consider a chaotic cavity connected to two
waveguides with an arbitrary number of channels, with and
without TRI, and we address both asymmetric and left-right
�LR� symmetric cavities. As an external parameter we will
take shape deformations. The purpose of this work is three-
fold: first, the calculations here presented help to understand

the distribution of the energy derivative of T in the presence
of absorption; in fact, we now present a complete theoretical
derivation of some of the results used in Ref. �30�. Second,
they also can serve to motivate the experimental analysis of
the distribution of the derivative of T but with respect to
shape deformations, where the results of the present paper
can be applied. That is the case of Ref. �30� where, in order
to improve statistics, the shape is modified by varying one
length of the resonator used in the experiments. Finally, in a
similar way, the experimental situation of Ref. �23� can be
used as well to study energy and shape deformation deriva-
tives of R.

The results presented here are valid for strong absorption.
However, they reproduce those existing in the literature for
the distribution of �T /�X at zero absorption intensity �24,25�.
In the absence of absorption the distribution of the paramet-
ric conductance derivative was calculated analytically by
Brouwer et al. �24� for an asymmetric quantum dot with two
single-mode point contacts. The �T /�X-distribution has alge-
braic tails and in the absence �presence� of TRI it shows a
cusp �divergence� at zero derivative; the second moment is
finite �infinite�. The reflection symmetric case was consid-
ered in Ref. �25�. There, the distribution of �T /�X diverges
logarithmically at zero derivative, it has algebraic tails with
an exponent which is different to that of the asymmetric
case.

The paper is organized as follows. In Sec. II we present
the main formal elements used throughout the paper, such as
the scattering matrix S and its parametric derivative in the
presence of absorption. Section II A is dedicated to asym-
metric cavities. The Poisson kernel for S and its application
to chaotic scattering in the presence of absorption is pre-
sented by means of a phenomenological model; the paramet-
ric derivative of S is defined in terms of a Wigner time delay
matrix whose eigenvalues are the proper time-delays, the in-
verse of them being distributed according to the Laguerre
ensemble. The general structure for S and its parametric de-
rivative for cavities with LR symmetry is introduced in Sec.
II B. The mean and variance of the parametric velocities for
T and R, as well as the correlator between the channel-
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channel transmission and reflection coefficients are calcu-
lated in Sec. III A in the presence of TRI, and in Sec. III B in
its absence. Section IV is dedicated to LR-symmetric cavities
where we calculate the variances of parametric velocities in
the presence �absence� of TRI. Finally, a summary of the
results as well as the conclusions are presented in Sec. V.

II. THE S MATRIX AND ITS PARAMETRIC
DERIVATIVE

A. Chaotic scattering by asymmetric cavities in the presence
of absorption

The scattering problem of a ballistic cavity connected to
two waveguides, each supporting N1 ,N2 transverse propagat-
ing modes �see Fig. 1�, can be described by the scattering
matrix S which, in the stationary case, relates the outgoing to
the incoming wave amplitudes �31�.

The absorption in the cavity is modeled attaching Np
equivalent non transmitting or “parasitic” channels to the
cavity by means of a tunnel barrier with transmission Tp for
each one �24,32�. The S matrix is N dimensional �N=N1

+N2+Np� with a structure given by

S = �s11 s12 s1p

s21 s22 s2p

sp1 sp2 spp
� � � S̃

s1p

s2p

sp1 sp2 spp
� , �1�

where the set of indices �1	 , �2	 , �p	 label the N1 ,N2 ,Np

channels. Here, the submatrix S̃ of dimension N1+N2 de-
scribes the scattering problem of the absorbing system. The
absorption can be quantified by the parameter �p=NpTp in
the limit Np→�, Tp→0 while keeping the product constant
�24�.

T and R are obtained from S, actually only from S̃, as
follows:

T = 

a�1



b�2

�Sab�2, R = 

a,b�1

�Sab�2. �2�

In our case only two of the three basic symmetry classes
in the Dyson’s scheme �33� are relevant. We assume that S
satisfy flux conservation by the restriction

SS† = 1N, �3�

where 1N stands for the unit matrix of dimension N. This case
is called “unitary” and it is designated as �=2. In addition, in
the presence of time reversal invariance S is symmetric,

S = ST. �4�

This is the “orthogonal” case, designated as �=1. Note that
the Np channels are normal scattering channels for the matrix

S, while they are absorbing channels for the matrix S̃, which
is a subunitary one and describes the physical system; it rep-
resents the scattering matrix of the absorbing system where
the flux is not conserved.

For systems with a chaotic classical limit, most transport
properties are sample specific and a statistical analysis of the
quantum-mechanical problem is needed. That study is per-
formed by the construction of ensembles of physical sys-
tems, described mathematically by ensembles of S matrices
distributed according to a probability law. The starting point
is a uniform distribution where S is a member of one of the
circular ensembles: circular unitary �orthogonal� ensemble,
CUE �COE�, for �=2 ��=1� �34�.

In the presence of direct processes, the information-
theoretic approach of Refs. �35,36� leads to an S matrix dis-
tributed according to Poisson’s kernel �37�

PK
����S� = C

�det�1N − �S
�S
†����N+2−��/2

�det�1N − S�S
†���N+2−� , �5�

where �S
 is the ensemble averaged S matrix.
A useful model to construct the Poisson ensemble consist

of a cavity connected to leads by tunnel barriers �38�. In the
case we are concerned with, where only the fictitious wave-
guide contains a tunnel barrier, the averaged S matrix can be
written as

�S
 = �
0N1

0 0

0 0N2
0

0 0 �1 − Tp1Np

� . �6�

As before, 1n stands for the unit matrix of dimensions n and
0n for the n-dimensional null matrix.

In what follows we restrict ourselves to the case where
Tp=1, i.e., PK

����S� is just a constant and the S matrix is
uniformly distributed. In this case, we are restricted to a
strong absorption situation, where the parameter �p takes
only integer values ��p=Np�. Also, the results here presented
are valid for no absorption �Np=0�, and a simple extrapola-
tion to non integer values of �p is qualitatively correct, as
will show later on.

If the coupling to the fictitious waveguide is perfect, we
can use the well known definition of the parametric deriva-
tive of S. The derivative of S with respect to the energy of
incidence E can be defined in terms of a symmetrized form
of the Wigner-Smith time delay matrix �39�, whose eigenval-
ues are identical among them �40�. In dimensionless units we
have

FIG. 1. A ballistic chaotic cavity connected to two leads with
N1 ,N2 channels. Np equivalent “parasitic” channels are attached to
the cavity by tunnel barriers with transmission Tp �32�. The absorp-
tion strength is given �p=NpTp in the limit Np→�, Tp→0 keeping
the product constant �24�.
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�S

��
= iS1/2Q�S1/2, �7�

where we have defined �=2�E /� with � the mean level
spacing, Q� is an N�N Hermitian matrix for �=2, real sym-
metric for �=1. The eigenvalues of Q� are 	H

−1 times the
proper delay times, where 	H=2�
 /� is the Heisenberg
time. In an analogous way, the derivative of S with respect to
an external parameter X is defined as �40�

�S

�x
= iS1/2QxS

1/2, �8�

where we have also defined a dimensionless parameter x
=X /Xc with Xc a typical scale for X, and Qx is an N�N
Hermitian matrix, real symmetric in the presence of time-
reversal symmetry.

For classically chaotic cavities the joint distribution of
S ,Q� and Qx is given by �40�

P��S,Q�,Qx� � �det Q��−2�N−3�1−�/2�

� exp�−
�

2
tr�Q�

−1 +
1

8
�Q�

−1Qx�2�� . �9�

S is independent of Q� and Qx, and uniformly distributed in
the space of scattering matrices. Following �40�, Qx has a
Gaussian distribution with a width set by Q�, that can be
parametrized as follows �40�

Qx = �−1†H�−1, �10�

where � is a N�N matrix, complex in the unitary case and
real in the orthogonal one, such that

Q� = �−1†�−1, �11�

and H is a N�N Hermitian matrix for �=2, and real sym-
metric for �=1. H has a Gaussian distribution with zero
mean and a variance

�HabHcd
 = �4
ad
bc, � = 2,

4�
ad
bc + 
ac
bd� , � = 1,
� �12�

as can be seen by substituting �10� and �11� into �9�. Now,
we diagonalize Q�,

Q� = W	̂W†. �13�

The elements �	n	 �n=1,… ,N� of 	̂ are the dimensionless
delay times. Their reciprocals xn=1/	n �n=1,… ,N� are dis-
tributed according to the Laguerre ensemble �40�,

PL
����x1,…,xN� � �

a�b

�xa − xb���
c

xc
�N/2e−�xc/2. �14�

The matrix of eigenvectors, W, is uniformly distributed in the
unitary �orthogonal� group for �=2 ��=1�.

For the calculations we are interested here, it is also con-
venient to parametrize the S matrix and its parametric deriva-
tive as �41�

S = UV,
�S

��
= i UQ�V,

�S

�x
= i UQxV , �15�

where U ,V are the most general N�N unitary matrices in
the unitary case ��=2�, while V=UT in the orthogonal one
��=1�.

B. Chaotic scattering by symmetric cavities in the presence
of absorption

For a system with spatial left-right �LR� symmetry, as
shown in Fig. 2, the S matrix is block diagonal in a basis of
definite parity with respect to reflections, with a circular en-
semble in each block �4,5�.

In the presence of absorption the S matrix that describes
the scattering of LR ballistic cavity connected to two
waveguides, is of dimension N=2N1+Np, where N1 are the
number of channels in each waveguide �the two waveguides
have the same number of channels and are symmetrically
positioned�; Np is the number of absorption channels that we
assume symmetrically distributed in the cavity. In this case,
the general structure for S is �5�

S = �r� t�

t� r�
� , �16�

where r� , t� are N��N� matrices, with N�=N1+Np /2. They
represent the reflection and transmission matrices, respec-
tively, associated to the total S matrix given by �16�, and not
for the physical one. The N1�N1 transmission and reflection
matrices, t and r, associated to the system with absorption,
are submatrices of t� and r�, respectively.

S matrices of the form given by Eq. �16�, which also
satisfy �3�, are appropriate for systems with reflection sym-
metry in the absence of TRI. With the additional condition
�4� it is appropriate for LR systems in the presence of TRI
�42�. However, when TRI is broken by a uniform magnetic
field, the problem of LR-symmetric cavities is mapped �5� to
the one of asymmetric cavities with �=1 with t� replaced by
r�.

Matrices with the structure �16� can be brought to a block-
diagonal form �4�

S = R0
T�S1 0

0 S2
�R0, �17�

where R0 is the rotation matrix

FIG. 2. A ballistic chaotic symmetric cavity connected to two
leads supporting N1 channels. Np nontransmitting channels are at-
tached to the cavity to model the absorption.
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R0 =
1
�2
� 1N� 1N�

− 1N� 1N�
� , �18�

1n denotes the n�n unit matrix; S1=r�+ t�, S2=r�− t� are the
most general N��N� scattering matrices. They are statisti-
cally uncorrelated and uniformly distributed: CUE ��=2�,
COE ��=1� �4�.

The transmission and reflection coefficients T and R, for
LR-symmetric ballistic cavity in the presence of absorption
are then given by

T =
1

4 

a,b=1

N1

��S1�ab − �S2�ab�2, �19�

R =
1

4 

a,b=1

N1

��S1�ab + �S2�ab�2, �20�

respectively.
The parametric derivative of S is defined through the

parametric derivatives of S1 and S2 as in Eqs. �7� and �8�.
The joint distribution �9� is satisfied for each matrix Sj �j
=1,2�. Finally, we note that they can be parametrized as in
Eqs. �15�.

In what follows we calculate the mean and variance of
�T /�q and �R /�q, where by q we mean � or x. Also, we
calculate the correlations between the q-derivative of the
channel-channel transmission coefficients.

III. MEAN AND VARIANCE OF �T /�q AND �R /�q
„q=� ,x… FOR ASYMMETRIC CAVITIES

In this section we first calculate the mean of the q deriva-
tive �q=� ,x� of T and R. Second, we calculate correlation
coefficient between the q derivative of two channel-channel
transmission coefficients, from where, finally, we can obtain
the variance of �T /�q and �R /�q. The present section is
devoted to asymmetric cavities for both �=1 and �=2 sym-
metries.

By convenience we define the probability to go from
channel b to channel a as

�ab = �Sab�2. �21�

From Eqs. �2� we can write

�T

�q
= 


a�1


b�2

��ab

�q
, �22�

�R

�q
= 


a,b�1

��ab

�q
. �23�

The ensemble average of �T /�q and �R /�q can be calcu-
lated if we substitute the parametrization �15� into Eqs. �22�
and �23�. In this way, we get expressions in terms of twice
the real part of products of averages of linear expressions in
Qq times averages of nonlinear expressions in V and/or U
�V=UT for �=1�. Using the results of Ref. �43�, the averages
with respect to U or V are real positive numbers, while

��Qx�ab
=0 because the matrix H of Eq. �10� has zero mean;
��Q��ab
 is a purely imaginary. Then, the results are

��T/�q
 = 0 = ��R/�q
, q = �,x , �24�

as expected because the distributions of �T /�q and �R /�q are
symmetric with respect to the zero derivative �24,25�.

The fluctuations require a more sophisticated analysis. Let
us define the correlation coefficients by

Cq
���

a�b�
ab = � ��ab

�q

��a�b�

�q
� . �25�

The variances of �T /�q and �R /�q are then given by

���T/�q�2
 = 

a,a��1



b,b��2

Cq
���

a�b�
ab , �26�

���R/�q�2
 = 

a,a��1



b,b��1

Cq
���

a�b�
ab , �27�

with

Cq
���

a�b�
ab = 2 Re��SabSa�b�

* �Sab
*

�q

�Sa�b�

�q
�

+ �Sab
* Sa�b�

* �Sab

�q

�Sa�b�

�q
�� , �28�

where we have written explicitly the elements of the S ma-
trix.

Because of the complexity of the calculations, in the rest
of this section we will consider the two symmetries �=1 and
�=2 in a separate way.

A. The orthogonal case

1. The correlator Cq
„1…

a�b�
ab

In the orthogonal case, the substitution of the parametri-
zation given by Eq. �15�, with V=UT, into Eq. �28� gives the
result

Cq
�1�

a�b�
ab = 2 Re 


�,�=1

N



��,��=1

N

��Qq����Qq�����


� 

c,c�=1

N

�J��,�,c,c� − J�c,c,�,��� , �29�

where, in order to simplify the expression, we have defined
the coefficients

J��,�,�,
� � Ma�,b
,a���,b���
a�,b�,a�c�,b�c�

� �Ua�Ub
Ua���Ub���Ua�
* Ub�

* Ua�c�
* Ub�c�

* 
 .

�30�

The first �last� two places � ,� �� ,
� of the argument of
J�� ,� ,� ,
�, refers to the second and fourth positions in the

upper �lower� indices of Ma�,b
,a���,b���
a�,b�,a�c�,b�c� which is defined by

the second line of Eq. �30�. As we can see in the Appendix ,
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the rest of the indices of the coefficients M are not modified
in the construction of Eq. �29�. Those coefficients M were
calculated in Ref. �43� �see Eq. �6.3� of that reference�; we
apply those results to our particular case in the Appendix.
The sums with respect c ,c� appearing in the second line of
Eq. �29� give the result



c,c�=1

N

�J��,�,c,c� − J�c,c,�,��� = − n1
�
�
��

�� − n2
�
��
�

��

+ n3
�
��
�

��. �31�

We substitute Eq. �31� into Eq. �29� and simplifly to obtain a
result that depends on n1 and n3−n2. In the Appendix we
show that n3−n2=Nn1 �see Eq. �A11�� where n1 is given by
Eq. �A13�. Then, we write Eq. �29� as

Cq
�1�

a�b�
ab = 2n1Re Kq

�1�, �32�

where

Kq
�1� = N


�=1

N

��Qq
2���
 − 


�,�=1

N

��Qq����Qq���
 . �33�

K�
�1� is given by Eq. �33� with q replaced by �. Kx

�1� can be
written in terms of Q� by direct substitution of Eq. �10� tak-
ing into Eq. �33�. The average over the matrix H is per-
formed into account Eqs. �11� and �12� for �=1; the result is

Kx
�1� = 4�N − 2�


�=1

N

��Q�
2���
 + 4N 


�,�=1

N

��Q�����Q����
 .

�34�

Now, we use the diagonal form of Q�, Eq. �13�. Kq
�1� becomes

independent of the unitary matrix W, and depends on two
eigenvalues of Q� as

Kx
�1� = 4N�N − 1��2�	1

2
 + N�	1	2
� , �35�

K�
�1� = N�N − 1���	1

2
 − �	1	2
� . �36�

The remaining averages of the 	 variables are performed by
direct integration using Eq. �14� for �=1. �	1

2
 diverges for
N=1, while the next four values of N give the general term

�	1
2
 =

2N!

�N − 2��N + 1�!
, �	1	2
 =

�N − 1�!
�N + 1�!

. �37�

Then Eqs. �35� and �36� are written as

Kx
�1� = 4NK�

�1�, K�
�1� =

�N − 1��N + 2�
�N − 2��N + 1�

. �38�

Equations �32�, �38�, and �A13� are combined to give the
desired results for the correlation coefficients namely

Cx
�1�

a�b�
ab = 4NC�

�1�
a�b�
ab , �39�

C�
�1�

a�b�
ab =

2

�N − 2�N2�N + 1�2�N + 3�
� �2�1 + 
a

b��1 + 
a�
b��

+ �N + 1��N + 2��
a
a�
b

b� + 
a
b�
b

a��2 − �N + 1��
b
a�

+ 
b
b� + 
a

a� + 
a
b� + 2
a

b
a�
b��
b

b�
a�
a + 
b

a�
b�
a �

+ 2�
b
b�
a�

b 
b�
a� + 
a

b
b
a�
a�

a + 
a
b
b

b�
b�
a + 
a

b�
a�
a 
b�

a���	 ,

�40�

where the dependence on the absorption strength �p=Np is
through N=N1+N2+Np.

From Eqs. �39� and �40� we analyze several cases of in-
terest. First, a�=a�1, b�=b�2, give the variances �maxi-
mal correlations� of the energy and parametric derivatives of
the channel-channel transmission coefficient ��ab /�q �q
=� ,x�; those are

����ab/�x�2
 = 4N����ab/���2
 , �41�

����ab/���2
 =
2�N2 + N + 2�

�N − 2�N2�N + 1�2�N + 3�
. �42�

We see that for strong absorption, �p=Np�N1,N2, they be-
have as

����ab/�x�2
 � �p
−3, ����ab/���2
 � �p

−4. �43�

Second, when a�=a�1 and b ,b��2, but b��b, in the limit
of strong absorption we obtain

� ��ab

�x

��ab�

�x
� � �p

−4, � ��ab

��

��ab�

��
� � �p

−5, �44�

that are smaller compared with the variances given by Eqs.
�43� by a factor of �p

−1. Finally, when all the indices are
different, in the limit of strong absorption, the correlator be-
tween the parametric derivatives of two different single
channel transmission coefficients behaves as

� ��ab

�x

��a�b�

�x
� � �p

−5, � ��ab

��

��a�b�

��
� � �p

−6, �45�

which are �p
−2 times the variances. We conclude that for

strong absorption, up to the order of ����ab /�q�2
, the corre-
lations between the elements ��ab /�q, for a�1, b�2, are
very small. Those quantities enter in the construction of
�T /�q �see Eq. �22�� and can be treated as N1N2 uncorrelated
variables with the same distribution. This is a relevant sim-
plification when the distribution of the parametric derivative
of the total transmission coefficient is desired, assuming the
one for each ��ab /�q is known. That is the case of Ref. �30�
where the numerical evidence shows an exponential decay
for P1���ab /���, P1��T /��� being calculated in a very
straightforward manner. Equations �41� and �42� can be used
to obtain the decay constant as a function of �p �30�.

2. Statistical fluctuations of �T /�q and �R /�q „q=� ,x…

The second moment of the distribution of �T /�q is ob-
tained from Eqs. �39� and �40� by direct subtitution into Eq.
�26�; we obtian
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���T/�x�2
 = 4N���T/���2
 , �46�

���T/���2
 = 2
N1N2��N + 1���p + 2� + 2N1N2�

�N − 2�N2�N + 1�2�N + 3�
. �47�

For the particular case N1=N2=1, Eqs. �46� and �47� re-
duce to Eqs. �41� and �42�, respectively. Also, when �p=Np
=0, which means no absorption, the variance of �T /�q di-
verges. This is in agreement with Ref. �24� where the distri-
bution of �T /�q, was obtained in the absence of absorption.
The distribution has long tails and a divergent second mo-
ment. This divergence is suppressed in the presence of ab-
sorption. We also see that the divergence of ���T /�q�2
 dis-
appear when N1 or N2 is larger than one for any absorption
strength.

In similar way, we substitute Eqs. �39� and �40� into Eq.
�27� to obtain

���R/�x�2
 = 4N���R/���2
 , �48�

���R/���2
 = 4
N1�N1 + 1��N − N1��N − N1 + 1�

�N − 2�N2�N + 1�2�N + 3�
, �49�

for N�2, while ���R /�q�2
 is infinite for N=1 as N�N1 or
N�N1−1. When N=N1 or N=N1−1, ���R /�q�2
=0.

Consider the case N1=1 and N2=0 �N=1+Np�, which is
relevant to the experimental data of Ref. �23�. In the absence
of absorption �p=Np=0, N=N1=1 and ���R /�q�2
=0 as ex-
pected �R=1�. For �p=Np�1, ���R /�q�2
 is infinite. Again,
the divergence is suppresed for �p=Np�1.

We recall that our results are valid in the strong absorp-
tion regime where by convenience we assumed perfect cou-
pling �Tp=1� of the Np absorbing channels. The absorption
strength �p=Np takes only integer values. However, a simple
extrapolation to Tp�1, which means arbitrary �p=TpNp,
works qualitatively well. In Fig. 3�a� we compare Eq. �47�,
for N1=N2=2, with the results from numerical simulations
�44� for Tp=0.025, 0.05, 0.075, 0.1, 0.125, and 0.15 with
Np=200 which give �p=5, 10, 15, 20, 25, 30.

In the absence of absorption, i.e., Np=0, the results pre-
sented here are strictly valid. In this case R+T=1 and the
distribution of �R /�q is equal to that of �T /�q. In particular
their variances are the same: it is easy to verify that Eqs. �48�
and �49� reduce to Eqs. �46� and �47�, in complete agreement
with the results obtained directly from the known distribu-
tion of those quantities in the absence of absorption �24�. The
particular cases N1=1, N2=0, and N1=N2=1 has been ex-
plained above. Similar conclusions are valid for the unitary
case and for �=1, 2 for reflection symmetric case below.

B. The unitary case

1. The correlator Cq
„2…

a�b�
ab

The unitary case is simpler than the orthogonal one. Fol-
lowing the same procedure, we substitute the parametrization
�15� into Eq. �28� with the result

Cq
�2�

a�b�
ab = 2 Re 


�,�=1

N



��,��=1

N



c,c�=1

N

���Qq����Qq�����


� Mac,a���
a�,a�c�Mcb,��b�

�b,c�b�

− ��Qq����Qq�����
Ma�,a���
ac,a�c� M�b,��b�

cb,c�b� � ,

where we have defined

Mab,cd
a�b�,c�d� � �U�abUcd� U�a�b�

* U�c�d�
* 
 , �50�

with U� a unitary matrix that denotes the unitary matrices U
or V of Eq. �15�. Those coefficients have been calculated in
Ref. �43� and read

Mab,cd
a�b�,c�d� =

1

N2 − 1
��
a

a�
c
c�
b

b�
d
d� + 
a

c�
c
a�
b

d�
d
b��

−
1

N
�
a

a�
c
c�
b

d�
d
b� + 
a

c�
c
a�
b

b�
d
d��� . �51�

We substitute Eq. �51� into Cq
�2�

ab
a�b� and perform the sum

over the dummy indices, the result is

Cq
�2�

a�b�
ab =

2�1 − N�
a
a� + 
b

b�� + N2
a
a�
b

b��
N2�N2 − 1�2 Re Kq

�2�, �52�

where Kq
�2� has the same form as Eq. �33� but with the upper

index 1 on the left-hand side replaced by 2, and the matrix
Qq is an Hermitian one. Again, K�

�2� is obtained by replacing
q=�. To write Kx

�2� in terms of Q� we use Eq. �10� and per-
form the average over H using Eq. �12� for �=2. The result
is

Kx
�2� = − 4


�=1

N

��Q�
2���
 + 4N 


�,�=1

N

��Q�����Q����
 . �53�

Now, we substitute Eq. �13� and perform the average over W
to obtain

Kx
�2� = 4N�N − 1���	1

2
 + N�	1	2
� , �54�

FIG. 3. ��T /���2 as a function of �p=TpNP for an asymmetric
cavity connected to two leads with N1=N2=2 open channels. The
errorbars indicates the result of numerical simulations �44� for Np

=200 and Tp=0.025, 0.05, 0.075, 0.1, 0.125, and 0.15, that give
�p=5, 10, 15, 20, 25, and 30. The continuous line is the analytical
formula given by Eq. �47� for �a� �=1, and Eq. �63� for �b� �=2.
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K�
�2� = N�N − 1���	1

2
 − �	1	2
� . �55�

By direct integration of the first N terms, Eq. �14� for �=2
give

�	1
2
 =

2N�N − 2�!
�N + 1�!

, �	1	2
 =
�N − 1�!
�N + 1�!

. �56�

Equations �54�–�56� give

Kx
�2� = 4NK�

�2�, K�
�2� = 1. �57�

Finally, we combine Eqs. �52� and �57� with the result

Cx
�2�

a�b�
ab = 4NC�

�2�
a�b�
ab , �58�

C�
�2�

a�b�
ab =

2�1 − N�
a
a� + 
b

b�� + N2
a
a�
b

b��
N2�N2 − 1�2 . �59�

Two different particular cases are of interest. The first
one, a correlated case, is obtained for a�=a�1 and b�=b
�2, for which one obtains that

����ab/�x�2
 = 4N����ab/���2
 , �60�

����ab/���2
 =
2

N2�N + 1�2 , �61�

which for strong absorption they have the behavior given by
Eq. �43�. Second, uncorrelated cases are obtained when a�
=a�1, b��b�b ,b��2�, and when all the indices are differ-
ent, in the strong absorption limit. For large �p=Np Eqs. �44�
and �45� are also satisfied for �=2. Those quantities are very
small compared to the order of ����ab /�q�2
, meaning that in
this limit the quantities ��ab /�q for a�1 and b�2, can be
treated as N1N2 uncorrelated variables with the same distri-
bution P2���ab /�q�. Numerical evidence �30� also shows an
exponential decay of P2���ab /��� for strong absorption; the
decay constant depends on �p and can be obtained from the
variance of ��ab /�q.

2. Fluctuations of �T /�q and �R /�q „q=� ,x…

The statistical fluctuations of the energy and parametric
derivative of the total transmission coefficient is obtained by
direct substitution of Eqs. �58� and �59� into Eq. �26� for �
=2. The results are

���T/�x�2
 = 4N���T/���2
 , �62�

���T/���2
 =
2N1N2�NNp + N1N2�

N2�N2 − 1�2 . �63�

When N1=N2=1 we reproduce Eqs. �60� and �61�. In this
case, ���T /�q�2
 does not diverges for �p=Np=0, in contrast
with the �=1 case. Also, this agrees with Ref. �24�.

Although �p takes only integer values, a simple extrapo-
lation to non integer values works qualitatively well as can
be seen in Fig. 3�b�, where we have compared Eq. �63� for
N1=N2=2, with the results from numerical simulations �44�
for Tp=0.025, 0.05, 0.075, 0.1, 0.125, and 0.15 with Np
=200.

Similarly, we substitute Eqs. �58� and �59� into Eq. �27�
for �=2 to obtain the fluctuations of the derivative of R; we
have

���R/�x�2
 = 4N���R/���2
 , �64�

���R/���2
 =
2N1

2�N − N1�2

N2�N2 − 1�2 . �65�

In contrast with the �=1 case, ���R /�q�2
 does diverges at
all for �=2.

IV. FLUCTUATIONS OF �T /�q AND �R /�q „q=� ,x…
FOR SYMMETRIC CAVITIES

Because of the left-right symmetry of the cavity it is suf-
ficient to consider �T /�q, the results for �R /�q are equiva-
lent. Also, as happens in asymmetric cavities, ���T /�x�2
 is
always 4N times ���T /���2
 �see Eqs. �46� and �62��. Then,
we will concentrate on the variance of the energy derivative
of T.

For LR-symmetric cavities we define ��ab as the channel-
channel transmission probability, i.e., the square modulus of
each element t�ab of the transmission matrix t� of Eq. �16�. It
can be written as

��ab =
1

4
���1�ab + ��2�ab − 2 Re fab� , �66�

where the prime on the left-hand side indicates that it is
defined for LR-symmetric cavities, while �1 ,�2 are defined
by Eq. �21� and correspond to S1 and S2 matrices; fab is an
interference term given by

fab = �S1�ab�S2
*�ab. �67�

The energy derivative of T is given by

�T/�� = 

a,b=1

N1

� ��ab/�� �68�

and its fluctuation by

���T/�/��2
 = 

a,b=1

N1



a�,b�=1

N1

D�
���

a�b�
ab , �69�

where, analogous to Eq. �25� for q=�, we have defined the
correlation coefficient for the symmetric case as

D�
���

a�b�
ab =� ���ab

��

��a�b�
�

��
� . �70�

Using Eq. �66� we write Eq. �70� as

D�
���

a�b�
ab =

1

8
�C��

���
a�b�
ab + Re F�

���
a�b�
ab � , �71�

where C��
���

a�b�
ab is given by Eq. �40� for �=1 and Eq. �59� for

�=2, with N replaced by N�=N1+Np /2, while

F�
���

a�b�
ab =� � fab

��

� fa�b�
*

��
� . �72�
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To arrive at Eq. �71� we used the fact that S1 and S2 are
statistically uncorrelated, equally and uniformly distributed
such that C2�

���
a�b�
ab =C1�

���
a�b�
ab , that we define as C��

���
a�b�
ab . Also,

we use the results �����1�ab /�������2�a�b� /���
=0 from one
side, ����� j�ab /�����fa�b� /���
=0 �j=1,2� for the other side,
and finally ���fab /�����fa�b� /���
=0 that are easy to verify.

In order to calculate F�
���

a�b�
ab we write it explicitly in terms

of S1 ,S2; it is given by

F�
���

a�b�
ab = 2���S1�ab�S1

*�a�b�
� ��S2
*�ab

��

��S2�a�b�

��
�

+��S1�ab

��S1
*�a�b�

��
���S2�a�b�

��S2
*�ab

��
�� .

�73�

The second line of Eq. �73� is zero as was shown in Ref.
�25�.

A. The �=1 symmetry

1. The correlator D�
„1…

a�b�
ab

From the appendix in Ref. �25�, for �=1 we have

��S1�ab�S1
*�a�b�
 = �
a

a�
b
b� + 
a

b�
b
a��/�N� + 1� , �74�

� ��S2
*�ab

��

��S2�a�b�

��
� =

�
a
a�
b

b� + 
a
b�
b

a��
N��N� + 1� 


�=1

N�

��Q�
2���
 ,

�75�

where we have replaced N by N�=N1+Np /2 and X by �.
Then, after we substitute Eqs. �13�, �74�, and �75� into Eq.
�73� we perform the average over the unitary matrix W to
arrive at the result

F�
�1�

a�b�
ab =

2�
a
a�
b

b� + 
a
b�
b

a��2

�N� + 1�2 ��	1
2
 − �	1
2� . �76�

Equation �14� with N replaced by N� gives �	1
=1/N� by
direct integration; and together with Eq. �37� leads us to the
result

F�
�1�

a�b�
ab =

2�N�2 + N� + 2��
a
a�
b

b� + 
a
b�
b

a��2

�N� − 2�N�2�N� + 1�3 . �77�

Finally, Eq. �40� with N� instead of N and Eq. �77� gives the
result for D�

�1�
a�b�
ab �see Eq. �71��.

As for the asymmetric case, several cases are of particular
interest. A first correlated case is obtained when all indices
are equal, which gives the variance of the energy derivative
of the transmission probability between two channels sym-
metrically located, ��aa; it is

�����aa/���2
 =
N��N�2 − 1� + �N� + 3��N�2 + N� + 2�

�N� − 2�N�2�N� + 1�3�N� + 3�
.

�78�

A second correlated case is obtained for a�=a and b�=b but
a�b, which gives the energy derivative variance of the

transmission coefficient ��ab between two channels not lo-
cated in a symmetric way; we have

�����ab/���2
 =
��N� + 1� + �N� + 3���N�2 + N� + 2�

4�N� − 2�N�2�N� + 1�3�N� + 3�
.

�79�

The last two equations are different because of the reflection
symmetry of the cavity. At level of the matrices S1 and S2
�see Eq. �17��, the diagonal elements represent reflection am-
plitudes, while the off-diagonal ones represent transmission
amplitudes. In fact, the first term on the right hand side of
Eqs. �78� and �79� are equal to Eqs. �41� and �49� �except by
a constant factor�, respectively, when N1=1 and N is re-
placed by N�. The second term of Eqs. �78� and �79� comes
from interference between S1 and S2 �see Eq. �71��.

In the limit of strong absorption, �����aa /���2
 and
�����ab /���2
 behave as �p

−4. In similar way, it is simple to
verify that �����aa /������a�b�

� /���
 and �����ab /���
����ab�

� /���
 behave as �p
−5, while �����aa /������a�a�

� /���
,
�����aa /������a�b�

� /���
, and �����ab /������a�b�
� /���
 go as

�p
−6. As happens in the asymmetric case, the variables

���ab /�q, for a, b=1,… ,N1, are uncorrelated for strong ab-
sorption. They enter in the construction of �T /�q �see Eq.
�68��, the distribution of which is easily obtained when the
one for ���ab /�q is known �30�.

2. Variance of �T /��

From Eqs. �40� with N replaced by N�, �69�, �71�, and
�77� for �=1 we obtain the variance of the energy derivative
of T, the result is

���T/���2
 =
N1�N1 + 1�

2�N� − 2�N�2�N� + 1�2�N�2 + N� + 2

N� + 1

+
�N� − N1��N� − N1 + 1�

N� + 3
� . �80�

The effect of the LR symmetry is clear. The second term of
the last equation is similar to Eq. �49� with R replaced by T.
That is because �T /�q for LR-symmetric cavity has a similar
expression to �R /�q for asymmetric cavity as can be seen by
comparison of Eq. �68� with Eq. �23�. The second term in
Eqs. �80� comes from the interference term of matrices S1 ,S2
as explained above �see Eq. �71��.

For N1=1, N�=1+Np /2, Eq. �80� reduces to Eq. �78�. In
this case ���T /�q�2
 diverges for �p=Np�2, but remains fi-
nite for �p=Np�2. When N1=2���T /�q�2
 diverges only for
�p=Np=0. In both cases a complete agreement with the re-
sults of Ref. �25� is found.

B. The �=2 symmetry

1. Correlations of ���ab /�q

Again, making an appropriate correspondence from Ref.
�25� we have

��S1�ab�S1
*�a�b�
 = 
a

a�
b
b�/N�, �81�
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� ��S2
*�ab

��

��S2�a�b�

��
� =


a
a�
b

b�

N�2 

�=1

N�

��Q�
2���
 . �82�

We substitute Eqs. �13�, �81�, and �82� into Eq. �73� for �
=2, and perform the average over the unitary matrix W; the
result is

F�
�2�

a�b�
ab =

2�N�2 + 1�
a
a�
b

b�

N�4�N�2 − 1�
, �83�

where we used Eq. �56� and the result �	1
=1/N� which can
be obtained by direct integration from Eq. �14�. Finally, Eqs.
�59� with N replaced by N� and �83� gives the desired result
for D�

�2�
a�b�
ab �Eq. �71� for �=2�.

In this �=2 symmetry there is not difference in the vari-
ance of the energy derivative of channel-channel transmis-
sion coefficient whether the two single channels are located
symmetrically or not. It is given by

�����ab/���2
 =
1

4N�2�N� + 1�2 +
N�2 + 1

4N�4�N�2 − 1�
. �84�

The first term on the right-hand side is the same, except by a
constant, as Eq. �61�, replacing N by N�. The second term
comes from interference between S1 and S2 �see Eq. �71��.
For strong absorption, �����aa /���2
 behaves as �p

−3. Also, as
�p=Np increases, the quantities ���ab /�� for a, b=1,… ,N1
become uncorrelated.

2. Variance of �T /��

From Eq. �59� with N replaced by N�, Eqs. �69� and �71�
for �=2, and Eq. �83� we obtain

���T/���2
 =
N1

2�N� − N1�2

4N�2�N�2 − 1�2 +
N1

2�N�2 + 1�
4N�4�N�2 − 1�

. �85�

Again, we note the effect of the LR symmetry. The first term
is similar to Eq. �65�. The second term in Eq. �85� comes
from the interference term of matrices S1 ,S2.

For the one channel case �N1=1�, ���T /���2
 diverges for
�p=Np=0, in contrast with the asymmetric case for �=2,
and in agreement with Ref. �25�. It remains finite for �p
�0.

In Fig. 4 we compare the analytical results �80� and �85�,
obtained with Tp=1, with the results from numerical simula-
tions for Tp�1; we observe a good qualitative agreement.

C. TRI broken by a magnetic field

When TRI is broken by a magnetic field, the problem of a
LR-symmetric cavity is reduced to the problem of asymmet-
ric cavity with �=1 symmetry but the roles of T and R
interchanged, such that the parametric derivative of T is
given by Eq. �23�. All the elements ��ab /�q, for a, b
=1,… ,N1, are uncorrelated in the strong absorption limit.

In this case, for instance, the variance of �T /�� is given
by

���T/���2
 =
4N1�N1 + 1��N − N1��N − N1 + 1�

�N − 2�N2�N + 1�2�N + 3�
. �86�

For a cavity connected to two leads each one supporting
one open channel, ���T /���2
 diverges for �p=Np=0, also in
contrast with the �=2 case for asymmetric cavities.

V. SUMMARY AND CONCLUSIONS

The purpose of the present paper was the study of the
statistical fluctuations of the derivative of the transmission T
and reflection R coefficients, with respect to the incident en-
ergy E and an external parameter X �shape of the cavity for
instance�, for ballistic chaotic cavities with absorption.

Our analytical results were obtained assuming Np equiva-
lent absorbing channels that are perfectly coupled to the cav-
ity �Tp=1�. This restrict our calculations to be valid in the
strong absorption limit, and the absorption strength takes
only integer values ��p=Np�. However, the results presented
here are also valid for no absorption, which means �p=Np
=0; they are in complete agreement with those obtained from
known distributions of the parametric derivatives of T and R
existing in the literature. Also, we have shown, by compari-
son with numerical simulations, that a simple extrapolation
to noninteger values of �p is qualitatively correct.

We considered both asymmetric and left-right �LR� sym-
metric cavities connected to two waveguides: N1 channels on
the left and N2 channels on the right; both symmetries, the
presence and absence of time-reversal invariance �TRI�, were
analyzed. For all cases, the fluctuations of the energy deriva-
tive are smaller than those with respect to parametric. We
found that ���T /�x�2
=4M���T /���2
, where �=2�E /� and
x=X /Xc with � the mean level spacing and Xc a typical scale
for X. M =N for asymmetric cavities, with N=N1+N2+Np,
while M =N /2 for the symmetric case �N1=N2�.

The correlation coefficient for the parametric derivative of
the channel-channel transmission probability
�ab ,��ab /�q�q=� ,x�, was calculated. It was shown that in
the strong absorption limit the different quantities ��ab /�q
for become uncorrelated variables. They enter in the con-
struction of �T /�q. This is a relevant simplification when the
distribution P��T /�q� is desired assuming the one for
��ab /�q is known. That is the case of Ref. �30� where nu-
merical simulations show evidence of an exponential decay
for P���ab /���. The decay constant � can be obtained di-

FIG. 4. The same as Fig. 3 but for symmetric cavities. The
continuous line is the analytical formula given by Eq. �80� for �a�
�=1, and Eq. �85� for �b� �=2.
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rectly from ���Tab /���2
=2/�2. A similar behavior for
��ab /�x is expected. This is in contrast with the case of zero
absorption where a long tail distribution is obtained for the
parametric conductance velocity �24,25�.

In the case of an asymmetric cavity connected to two
leads each one with one open channel �N1=N2=1�, at zero
absorption, we find that ���T /�q�2
�q=E ,X� is finite when no
TRI is present, but is infinite in the presence of TRI, in
agreement with Ref. �24� where a long tails distribution for
�T /�q was obtained. The divergence in the second moment
is suppressed by absorption and we expect that the long tails
become exponential at sufficiently large �p as mentioned
above. This case also corresponds to one of an asymmetric
cavity with one-lead-one-channel �N1=1, N2=0� with one
channel of absorption perfectly coupled to the cavity, i.e.,
�p=1. In this case, ���R /�q�2
 is infinite �finite� in the pres-
ence �absence� of TRI. ���R /�q�2
=0 at zero absorption, as
should be, and it is infinite for 0��p�1. The divergence
disappear for �p�1.

For a left-right �LR�-symmetric cavity connected to two
waveguides with one open channel each one �N1=N2=1�,
���T /�q�2
 is divergent for 0��p�2, and remains finite for
�p�2 in the presence of TRI. In the absence of TRI, the
results are different in the presence or absence of an applied
magnetic field. However, in both cases ���T /�q�2
 diverges at
�p=0, in contrast to the asymmetric case, and in agreement
with Ref. �25�: a long tails distribution for �T /�q was found
at zero absorption for presence and absence of TRI.
���T /�q�2
 is finite for �p�0. We also expect that the long
tails will be suppressed at sufficiently strong absorption �30�.

The results obtained in this paper help to understand some
results presented in Ref. �30� about the energy derivative of
the transmission coefficient, and can serve as a motivation to
extend that analysis to study the distribution of the transmis-
sion derivative with respect to shape deformations, as well as
to motivate the analysis of the distribution of the parametric
derivative of the reflection coefficient.
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APPENDIX : THE COEFFICIENTS M„� ,� ,� ,�…

Applying the result �6.3� of Ref. �43� to our case, we can
write Eq. �30� as

J��,�,�,
� = Au1 + Bu2 + Cu3 + Du4 + Eu5, �A1�

where

A =
N4 − 8N2 + 6

N2�N2 − 1��N2 − 4��N2 − 9�
,

B = −
N�N2 − 4�

N2�N2 − 1��N2 − 4��N2 − 9�
,

C =
2N2 − 3

N2�N2 − 1��N2 − 4��N2 − 9�
,

D =
N2 + 6

N2�N2 − 1��N2 − 4��N2 − 9�
,

E = −
5N

N2�N2 − 1��N2 − 4��N2 − 9�
, �A2�

and

u1 = a1�
�
�



�
��
c� 
��

c� � + a2�
�
�



c�
��
� 
��

c� � + a3�
�
�



c�
��
c� 
��

� �

+ a4�
�
�



�
��
c� 
��

c� � + a5�
�
�



c�
��
� 
��

c� � + a6�
�
�



c�
��
c� 
��

� �

+ a7�
�
c�



�
��
� 
��

c� � + a8�
�
c�



�
��
c� 
��

� � + a9�
�
c�



�
��
� 
��

c� �

+ a10�
�
c�



�
��
c� 
��

� � + a11�
�
c�



c�
��
� 
��

� �

+ a12�
�
c�



c�
��
� 
��

� � , �A3�

with

a1 = 1 + 
a�
b�, a2 = �1 + 
b

b�
b�
a��
b

a�,

a3 = �1 + 
b
a�
a�

b��
b�
b , a4 = �1 + 
a�

b��
a
b,

a5 = �
b
a� + 
b

b�
b�
a��
a

b
a
a�, a6 = �
b

b� + 
b
a�
a�

b��
a
b
b�

a ,

a7 = �
a
a� + 
a

b�
b�
a��
b

a
a�
b , a8 = �
a

b� + 
a
a�
a�

b��
b
a
b�

b ,

a9 = �1 + 
a
b�
b�

a��
a
a�, a10 = �1 + 
a

a�
a�
b��
a

b�,

a11 = �1 + 
a
b�
b

a��
a
a�
b

b�, a12 = �1 + 
a
a�
b

b��
a
b�
b

a�.

�A4�

The coefficients uj, for j=2,… ,5, are obtained from u1
through appropriate place permutations of the upper indices
�� ,� ,c� ,c�� of the coefficient M of Eq. �30�. u2 is obtained
by the sum of the place permutations �12�, �13�, �14�, �23�,
�24�, �34�, while u3 by the sum of the permutations �123�,
�132�, �124�, �142�, �134�, �143�, �234�, �243�; u4 by permu-
tations �12��34�, �13��24�, �14��23�, and finally u5 by the
place permutations �1234�, �1243�, �1324�, �1342�, �1423�,
�1432�. The results for u2 ,u3 ,u4 ,u5 are of the same form as
Eq. �A3� but with ak replaced by coefficients that we call
bk ,ck ,dk ,ek, respectively; they depend on sums of ak’s. We
will see below that not all them contribute to Eq. �29�; then,
we show only the coefficients indexed by k=11, 12 that are
important to that equation:

b11 = a3 + a5 + a8 + a9 + a11 + a12,

b12 = a2 + a6 + a7 + a10 + a11 + a12,

c11 = a2 + a3 + a5 + a6 + a7 + a8 + a9 + a10,

c12 = c11,

d11 = a1 + a4 + a12,
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d12 = a1 + a4 + a11,

e11 = a1 + a2 + a4 + a6 + a7 + a10,

e12 = a1 + a3 + a4 + a5 + a8 + a9. �A5�

For instance, the result for J�� ,� ,� ,
� can be written as

J��,�,�,
� = m1�
�
�



�
��
c� 
��

c� � + m2�
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��
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� � ,

�A6�

where

mk = Aak + Bbk + Cck + Ddk + Eek, k = 1,…,12.

�A7�

From Eq. �A6� we construct the coefficients J�� ,� ,c ,c� and
J�c ,c ,� ,��, take the difference of them and sum with re-

spect to c ,c�. The result is given by Eq. �31�, where

n1 = m11 + m12, �A8�

n2 = m2 − m3 − m9 + m10 − Nm11, �A9�

n3 = m2 − m3 − m9 + m10 + Nm12. �A10�

From Eqs �A9� and �A10� we see that

n3 − n2 = Nn1. �A11�

Equations �29� and �31� leads to Eq. �32�, the result being
dependent on n1, and n2 ,n3 through the difference n3−n2
=Nn1. From Eqs. �A5�, �A7�, and �A8�, n1 is given by

n1 = �A + 2B + D��a11 + a12� + 2�D + E��a1 + a4� + �B + 2C

+ E��a2 + a3 + a5 + a6 + a7 + a8 + a9 + a10� . �A12�

Finally, Eqs. �A2� and �A4� give

n1 =
1

N2�N2 − 1��N + 2��N + 3�
�2�1 + 
a

b��1 + 
a�
b�� + �N + 1�

��N + 2��
a
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b
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a�
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a
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a
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b��
b
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b

a�
b�
a � + 2�
b

b�
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b�

a� + 
a
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b

a�
a�
a
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a
b
b

b�
b�
a + 
a
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a�
a 
b�

a���	 . �A13�
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